УДК 541.64:547.963.1:535.2

СИНТЕЗ, ФОТОФИЗИЧЕСКИЕ И ЭЛЕКТРОХРОМНЫЕ СВОЙСТВА НОВЫХ ТРИАРИЛАМИНОСОДЕРЖАЩИХ ПОЛИФЕНИЛХИНОКСАЛИНОВ¹

© 2011 г. М. Л. Кештов*, М. И. Бузин*, П. В. Петровский*, Е. Е. Махаева**, В. С. Кочуров**, Д. В. Марочкин*, А. Р. Хохлов*

* Учреждение Российской академии наук Институт элементорганических соединений им. А.Н. Несмеянова РАН 119991 Москва, ул. Вавилова, 28

** Московский государственный университет им. М.В. Ломоносова. Химический факультет 119991 Москва, Ленинские горы Поступила в редакцию 24.06.2010 г. Принята в печать 17.11.2010 г.

Синтезированы новые триариламиносодержащие *бис*- α -дикетоны. На их основе получена серия электрохромных органорастворимых полифенилхиноксалинов с температурой стеклования 224–315°С. Все полимеры интенсивно флуоресцируют в растворе и тонких пленках с максимумами в пределах 535–600 и 530–560 нм соответственно. Циклические вольтаммограммы полифенилхиноксалинов обнаруживают обратимые редокс-свойства в области $E_{1/2} = 0.92 - 1.25$ эВ. Показано, что после пятнадцати циклов все полимеры сохраняют высокую стабильность и обратимость электрохромных характеристик, при этом их цвет меняется от желтого (нейтральная форма) до красно-бордового (окисленная форма).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В последнее два десятилетия π-сопряженные полимеры привлекли значительное внимание исследователей не только с научной, но и практической точки зрения. Благодаря уникальным оптоэлектронным и редокс-свойствам сопряженные полимеры нашли применение в качестве электроактивных материалов для светоизлучающих диодов, фотовольтаических ячеек, полевых транзисторов и электрохромных устройств. В настоящее время интенсивно исследуют сопряженные полимеры с триариламиновыми фрагментами в основной цепи не только в качестве дырочно-транспортных, но и как эффективные электорхромные материалы [1-5]. Триариламин при электрохимическом окислении легко образует стабильный катион-радикал, сопровождающийся заметным изменением окраски, что делает его привлекательным электрохромным "строительным блоком" анодного типа. В последние годы синтезирован ряд классов электрохромных полимеров (полиимиды, полиамиды, полифенилены, полиазометины) с триариламиновыми фрагментами в основной цепи, сочетающие высокие термические стабильности с привлекательными фотофизическими и электрохромными свойствами [6–11].

Полифенилхиноксалины (ПФХ) с триариламиновыми фрагментами являются не только электронно-транспортными блоками *n*-типа, но также обнаруживают эффективные электрохромные свойства. Олнако последние не исследованы в качестве электрохромных материалов. Введение объемистых звеньев триариламина в ПФХ является структурным подходом, который способствует не только увеличению растворимости без ущерба положительным качествам, но также придает полимерам дырочно-транспортные и электрохромные свойства. Кроме того, важной особенностью ПФХ является возможность легко регулировать цветность путем химической модификации полимерной цепи для достижения нужного мультихромизма.

Для получения ПФХ с трифениламиновыми фрагментами в основной цепи предварительно была синтезирована серия новых *бис*- α -дикетонов III, для чего триариламин бромировали с образованием *бис*-(4-бромфенил)ариламина I с последующим введением последнего в реакцию кросс-сочетания с фенилацетиленом в присутствии палладиевого катализатора. Полученный таким образом *бис*-(4-фенилэтинил)ариламин II был окислен до целевого *бис*- α -дикетона III. Обобщенная схема синтеза этих соединений представлена в следующем виде:

¹ Работа выполнена при финансовой поддержке Программы фундаментальных исследований Отделения химии и наук о материалах РАН (проект ОХ-2) и Президиума РАН (П-21 "Основы фундаментальных исследований нанотехнологий и наноматериалов").

E-mail: keshtov@ineos.ac.ru (Кештов Мухамед Лостанбиевич).

где R = H (а) и $R = NO_2$ (б).

Состав и строение промежуточных соединений I, II и целевого продукта III подтверждены данными элементного анализа, ИК-, КР-, ЯМР ¹Н и ЯМР ¹³С-спектроскопии (табл. 1 и 2; рис. 1). В частности, в ИК-спектрах *бис*- α -дикетона III6 имеются характерные интенсивные полосы валентных колебаний α -дикетонной группы (1674 см⁻¹), а в спектре ПМР присутствуют четыре дублета с центрами при 8.21, 8.0, 7.81, 7.21 м.д., принадлежащие к протонам H_a , H_e , H_{δ} , H_e и H_{∞} соответственно (рис. 1А), и два триплета при 7.67 и 7.77 м.д., обусловленные наложением сигналов *мета*- и *пара*-протонов (H_e , H_{∂}) свободных фенильных групп. В спектрах ЯМР¹³С

Таблица 1. Некоторые характеристики промежуточных соединений I–II и конечных продуктов III

Соелинение	BUYOT %	T °C	Брутто-формула	Элементный анализ (вычислено/найдено)			
Соединение	Былод, 70	л _{пл} , с	Бруню формула	С	Н	Ν	Br
Ia	98.0	181-183	$C_{18}H_{13}N_1Br_2$	$\frac{53.62}{53.71}$	$\frac{3.25}{3.28}$	$\frac{3.47}{3.51}$	$\frac{39.66}{39.96}$
Іб	95.7	200-202	$C_{18}H_{12}N_{2}Br_{2}O_{2}$	$\frac{48.24}{48.29}$	$\frac{2.7}{2.76}$	$\frac{6.26}{6.32}$	$\frac{35.63}{35.77}$
IIa	76.0	165-167	C ₃₄ H ₂₃ N	$\frac{91.65}{91.71}$	$\frac{5.2}{5.29}$	$\frac{3.14}{3.32}$	_
II6	71.3	171–173	$C_{34}H_{22}N_2O_2$	$\frac{83.25}{83.38}$	$\frac{4.52}{4.64}$	$\frac{5.75}{5.82}$	_
IIIa	96.8	66–68	$C_{34}H_{23}NO_4$	$\frac{80.14}{80.21}$	$\frac{4.55}{4.42}$	$\frac{2.75}{2.62}$	_
III6	95.1	185-187	$C_{34}H_{22}N_2O_6$	$\frac{73.64}{73.77}$	$\frac{4.0}{4.09}$	$\frac{5.05}{5.15}$	_

соединения IIIб в области 195.12 и 194.66 м.д. присутствуют два сигнала, характерные для двух различных карбонильных групп α-дикетонного фрагмента (рис. 1Б). Кроме перечисленных характерных сигналов между 108 и 140 м.д. обнаруживаются интенсивные сигналы, относящихся к 12 различным атомам углерода, пять из которых четвертичные.

Полученные *бис*- α -дикетоны III(a, б) были использованы для синтеза ПФХ (IV) в соответствии со схемой (2):

где R = H (IVa, IVв) и $R = NO_2$ (IVб).

Синтез ПФХ проводили в *м*-крезоле в течение 1 ч при 25°С, далее температуру реакционной смеси поднимали до 160°С и выдерживали в этих условиях еще 5 ч. Процесс протекал

в гомогенных условиях и позволил синтезировать полимеры с относительно высокой приведенной вязкостью растворов ($\eta_{np} = 0.79 - 0.92 \text{ дл/г}$).

Таблица 2.	Спектральные ха	рактеристики проме	ежуточных соединений I	-III
------------	-----------------	--------------------	------------------------	------

Соеди-	у см ⁻¹ ИК	δ, м. д.				
нение	v, cm , mx	ЯМР ¹ Н	ЯМР ¹³ С			
Ia	1071 (Ar–Br), 1283 (Ar–N)	7.34 (д, 4Н); 7.28 (т, 2Н); 7.06 (м, 3Н); 6. 94 (д, 4Н)	147.41 (C); 146.81 (C); 114.30 (C); 132.10 (CH); 129.40 (CH); 124.80 (CH); 124.50 (CH); 123.40 (CH)			
Іб	1059 (Ar–Br), 1274 (Ar–N)	8.04 (д, 2Н); 7.46 (д, 4Н); 7.02 (д, 4Н); 6.95 (д, 2Н)	153.42 (C); 144.19 (C); 139.90(C); 114.30 (C); 132.10 (CH); 125.70 (CH); 125.00 (CH); 124.80 (CH)			
IIa	2205 (C≡C)	7.67–7.63 (м, 4Н); 7.56–7.51 (м, 4Н); 7.47–7.36 (м, 8Н); 7.25–7.08 (м, 7Н)	89.83 (C=C); 89.36 (C=C); 117. 37 (C); 123.70 (C); 146.84 (C); 147.38 (C); 122.89 (CH); 123.52 (CH); 125.67 (CH); 128.27 (CH); 128.57 (CH); 129.82 (CH); 131.73 (CH); 132.60 (CH); 132.93 (CH)			
II6	2218 (C≡C)	8.09–8.05 (м, 2Н); 7.52–7.45 (м, 8Н); 7.35–7.33 (м, 4Н); 7.13–6.93 (м, 8Н)	155.32 (C); 148.12 (C); 139.90 (C); 123.40 (C); 114.35 (C); 89.47 (≡); 89.78 (≡); 133.05 (CH); 131.65 (CH); 128.60 (CH); 128.20 (CH); 125.70 (CH); 125.0 (CH); 123.77 (CH)			
IIIa	1674 (C=O)	7.97 (д, 4Н); 7.85 (д, 4Н); 7.64 (т, 2Н); 7.50 (т, 4Н); 7.36 (т, 2Н); 7.25 (т, 1Н); 7.15 (т, 6Н)	194.49 (CO); 192.54 (CO); 151.97(C); 144.92 (C); 132.96 (C); 127.40 (C); 134.71 (CH); 131.54 (CH); 130.11(CH); 129.83 (CH); 128.87 (CH); 127.12 (CH); 126.53 (CH); 122.45 (CH)			
III6	1659 (C=O)	8.16 (д, 2Н); 7.98–7.93 (м, 8Н); 7.67 (т, 2Н); 7.52 (т, 4Н); 7.20 (д, 6Н)	194.03 (CO); 192.36 (CO); 151.0 (C); 150.86 (C); 143.64 (C); 132.74 (C); 129.26 (C); 134.96 (CH); 131.86 (CH); 129.87 (CH); 128.97 (CH); 125.55 (CH); 124.51 (CH); 123.96 (CH)			

Рис. 1. Спектры ЯМР 1 Н (А) и ЯМР 13 С (Б) соединения IIIб.

Строение полимеров IV подтверждено данными ИК-фурье-спектроскопии. В ИК-спектрах полимеров присутствуют полосы поглощения в области 1640—1645 см⁻¹, характерные для валентных колебаний связей СN в хиноксалиновых циклах, и отсутствуют полосы поглощения в области 1660—1680 и 3200—3400 см⁻¹, относящиеся к валентным колебаниям групп CO и NH₂ исходных соединений. Термические свойства полимеров IV исследованы методами ДСК и ТГА. Температура стеклования ПФХ, найденная из кривых ДСК, лежит в области 224–315°С. Температура 10%-ной потери массы, определенная методом ТГА в атмосфере аргона и на воздухе, находится в диапазоне 420–577 и 414–550°С соответственно. Из данных табл. 3 следует, что при введении в аминовую компоненту боковых алифатических групп понижается температура стеклования и разложения полимеров. Хорошая растворимость ПФХ в апротонных растворителях позволила получить из их растворов пленки (30 мкм) с прочностью на разрыв $\sigma = 85-95$ МПа и относительным удлинением при разрыве $\varepsilon = 8-10\%$.

СИНТЕЗ, ФОТОФИЗИЧЕСКИЕ И ЭЛЕКТРОХРОМНЫЕ СВОЙСТВА

Таблица 3. Некоторые характеристики ПФХ общей формулы

* В числителе – на воздухе, в знаменателе – в аргоне.

Полимер	$\lambda_{\text{Makc}}^{\text{abc}}$, HM	$\lambda^{\phi_{\pi}}_{_{MAKC}}$, HM	$\lambda_{\rm hay}, {\rm HM}$	ВЗМО, эВ	НВМО, эВ	<i>Е</i> ^{опт} , эВ	<i>Е</i> _{1/2} , эВ
IVa	$\frac{435}{432}$	$\frac{535}{530}$	495	5.40	2.89	2.51	1.04
Ινδ	$\frac{410}{405}$	$\frac{600}{560}$	482	5.61	3.04	2.57	1.25
IVB	$\frac{450}{445}$	$\frac{535}{533}$	510	5.28	2.85	2.43	0.92

Таблица 4.	Некоторые оптически	и электрохимические сво	ойства полимеров IV
------------	---------------------	-------------------------	---------------------

Примечание. В числителе даны значения максимумов спектров поглощения и люминесценции в хлороформе ($c = 10^{-4}$ моль/л), в знаменателе – тонких пленок. ВЗМО и НВМО – высшие занятые и низшие вакантные молекулярные орбитали полимеров (HBMO = B3MO – E^{OIT}). $E^{\text{OIT}} = 1240/\lambda_{\text{Hav}}$.

Оптические свойства ПФХ были исследованы с помощью ультрафиолетовой, видимой и фотолюминесцентной спектроскопии. Результаты спектральных данных представлены в табл. 4, а соответствующие спектры поглощения и флуоресценции ПФХ в растворе и тонких пленках показаны на рис. 2. Спектры поглощения сопряженных полимеров обнаруживают сильную абсорбцию с максимумами поглощения в растворе и тонких пленках в области 410–450 и

Рис. 2. Спектры поглощения и флуоресценции полимеров IVa (1), IV6 (2), IVB (3) в хлороформе ($c = 10^{-4}$ моль/л).

405-445 нм, а максимумы спектров флуоресценции в тех же условиях находятся в области 535-600 и 530-560 нм соответственно. Электрохимические свойства полимеров исследовали с помощью циклической вольтамметрии. Результаты электрохимических исследовании приведены в табл. 4. Все полимеры обладают обратимыми, или частично обратимыми окислительно-восстановительными свойствами благодаря высокой электроактивности полимеров и обнаруживают редокс-пару в области $E_{1/2} = 0.92 - 1.25$ эВ. Типичные циклические вольтаммограммы для полимеров IVa и IVб приведены на рис. 3. ПФХ IVa обнаруживает одну обратимую окислительно-восстановительную пару при $E_{1/2} = 1.04$ В (рис. 3а), которую приписывают катион-радикалу R₁ при удалении электрона от атома азота трифениламинового фрагмента. Образование подобных катион-радикалов было идентифицировано с помощью ЭПР [12]. Ширину энергии запрещенной зоны ($E^{\text{опт}}$), энергии ВЗМО и НВМО полимеров определяли из потенциала полуволны ($E_{1/2}$) и $\lambda_{\text{нач}}^{\text{aбc}}$ спектра поглощения пленок (табл. 4). В частности, для полимера IVa

$$E^{\text{B3MO}} = E_{(\text{Fc/Fc} + \text{Bak})} - E_{1/2, (\text{Fc/Fc}+)} + E_{1/2}^{\text{ok}} = 5.40 \text{ }\text{\Im B},$$

где $E_{\text{Fc/Fc+Bak}} = 4.8 \ \Im B (E_{\text{(Fc/Fc+)}}^{\text{B3MO}} \text{ стандарт в вакууме});$ $E_{1/2, \text{ (Fc/Fc+)}} = 0.44 \ \Im B (внешний редокс-стандарт);$ $E_{1/2}^{\text{ok}} = 1.04 \ \Im B (полимер IVa).$

Из сопоставления электрохимических данных (табл. 4) обнаружено, что полимер IVв ($E_{1/2}$ =0.92 эВ) легче окисляется по сравнению с полимерами IVa ($E_{1/2}$ =1.04 В) и IV6 ($E_{1/2}$ =1.25 эВ). По-видимому, введение электронодонорных групп понижает окислительный потенциал электроактивных полимеров.

Электрохромные свойства тонких пленок ПФХ изучали с помощью оптически прозрачного тонкослойного электрода, соединенного с UV-VIS-спектрометром. Типичные электрохромные спектры поглощения полимера IVб и IVв, записанные при различных потенциалах, представлены на рис. 4А и 4Б. При увеличении приложенного потенциала от 0 до 1.9 В в процессе окисления интенсивность характеристического пика при 410 нм, принадлежащего нейтральной форме ПФХ IVб, постепенно уменьшается и сдвигается до 391 нм, в то время как при 860 нм появляется широкий сигнал, который растет постепенно по мере увеличения приложенного потенциала благодаря образованию стабильного катион-радикала, приписываемого фрагменту триариламина. При этом

Рис. 3. Циклические вольтаммограммы ПФХ IVa (а) и IV6 (б) в 0.1 М растворе тетрабутиламмоний перхлорат/ацетонитрил при скорости сканирования 50 мВ/с.

цвет пленки меняется от желтого (нейтральная форма) до бордово-красного (окисленная фор-

ма). Путь анодного окисления полимера IVб представлен схемой

Время переключения цвета (время окрашивания) оценивается с помощью ступенчатого

потенциала и профиля поглощения (рис. 5) как время, необходимое для достижения 90%-ного

Рис. 4. Электронные спектры поглощения ПФХ IVa (А) и IVb (Б) в 0.1 М растворе тетрабутиламмоний перхлорат/ацетонитрил (относительно Ag/AgCI) при различных значениях потенциала *B*. А: B = 0 (*a*), 1.0 (*b*), 1.2 (*b*), 1.3 (*c*), 1.5 (*d*), 1.7 (*e*) и 1.9 (*w*); Б: B = 0 (*a*), 0.9 (*b*), 0.95 (*b*), 1.0 (*c*), 1.05 (*d*), 1.1 (*e*), 1.15 (*w*) и 1.20 (3).

изменения полного поглощения после приложения потенциала. Так, для полимера IVв ($\lambda = 800$ нм) требуется 5.5 с при 1.1 В для переключения цвета и 0.9 с для обесцвечивания. Наблюдаемые UV-VIS абсорбционные изменения в полимерах являются полностью обратимыми

Рис. 5. Вычисление времени оптического переключения полимера IVв на длине волны 800 нм при приложении потенциала (0 = 1.1 B).

Рис. 6. Потенциальная шаговая абсорбометрия полимера IVв при ступенчатой подаче напряжения (0 \implies 1.1 В) при длине волны 800 нм в 0.1 М растворе тетрабутиламмоний перхлората/ацетонитрил с периодом 20 с.

процессами и связаны с сильным изменением цвета.

Благодаря хорошей адгезии между полимерной пленкой и поверхностью ITO электрода после 15 непрерывных циклов ПФХ обнаруживают высокую стабильность и обратимость электрохромных характеристик (рис. 6).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н и ЯМР ¹³С полученных соединений и полимеров записывали на спектрометре "Bruker AMX-400" с рабочей частотой 400.13 и 100.62 МГц соответственно. ИК-спектры регистрировали с помощью ИК-фурье-спектрометра "Perkin Elmer 1720-Х". Кривые ТГА и ДСК

снимали на приборах "Perkin Elmer TGA-7" и "Perkin Elmer DSC-7" при скорости нагревания 10 град/мин. Спектры поглощения в диапазоне 190-900 нм регистрировали на спектрофотометре "Varian Cary 50". Источник возбуждающего излучения – ксеноновая лампа L8253, входящая в состав блока излучателя с волоконно-оптическим выводом излучения "Hamamatsu LC-4". Спектры флуоресценции регистрировали с помощью спектрофотометра "Cary Eclipse". Измерения циклической вольтамметрии проводили на потенциостате-гальваностате IPC PRO "Эконикс" по стандартной трехэлектродной схеме в атмосфере аргона. Рабочим образцом служили пленки исследуемых полимеров, нанесенные на поверхность стекла с покрытием ITO. В качестве электрода сравнения использовали AgCl электрод, противоэлектродом служил платиновый электрод. Скорость сканирования 50 мВ/с. Пленки исследуемых полимеров получали с помощью центрифуги. Субстратом служило стекло с покрытием ITO (сопротивление 6–15 Ом/см²). Раствор полимера (10 мг/мл в ДМФА) наносили на подложку, закрепленную на вращающейся (1000 об/мин) платформе. Толщина полученных пленок составляла около 100 нм.

Бис-(4-бромфенил)фениламин (Ia). В двугорлую колбу емкостью 300 мл, снабженную обратным холодильником и магнитной мешалкой, помещали 12.27 г (50 ммоль) трифениламина, 17.80 г (100 ммоль) N-бромсукцинимида и 250 мл свежеперегнанного ДМФА. Реакционную смесь перемешивали два дня при комнатной температуре. Затем растворитель отгоняли на роторном испарителе. Полученный вязкий раствор выливали в воду, экстрагировали хлористым метиленом и высушивали безводным сульфатом магния. Растворитель упаривали. Полученную вязкую жидкость очищали колоночной хромотографией (этилацетат : гексан = 1 : 10). Выход 19.75 г (98%).

Бис-(4-фенилэтинил)фениламин (IIa). В трехгорлую колбу емкостью 500 мл, снабженную обратным холодильником, магнитной мешалкой и вводом для аргона, помещали 13.47 г (33.41 ммоля) соединения I, 6.82 г (66.82 ммоля) фенилацетилена, 0.4 г трифенилфосфина, 0.3 г (PPh₃)₂PdCl₂, 0.3 г CuI и 250 мл триэтиламина после чего реакционную смесь кипятили в атмосфере аргона 10 ч. Затем растворитель отгоняли на роторном испарителе. Остаток кристаллизовали из гексана. Выход 11.30 г (76%).

Бис-(4-фенилглиоксалил)фениламин (IIIa). В трехгорлую колбу емкостью 500 мл, снабженную мешалкой, обратным холодильником и термометром, помещали 7.57 г (17 ммоля) соединения II, 11.56 г (73.15 ммоля) перманганата калия, 14.17 мл воды, 5.3 мл уксусной кислоты, 350 мл ацетона и кипятили 2.5 ч. В ходе реакции обильно выделялся черный осадок MnO₂. После завершения реакции осадок отфильтровывали и промывали дважды ацетоном. Затем из фильтрата отгоняли растворитель на роторном испарителе. Остаток промывали дистиллированной водой до нейтральных реакции, сушили и кристаллизовали из гептана, получая ярко-желтые кристаллы. Выход 8.39 г (96.8%).

Бис-(**4-бромфенил)**(**4'-нитрофенил)амин** (**16**) синтезировали аналогично соединению Ia, начиная от (4-нитрофенил)дифениламина. Получили ярко-оранжевые кристаллы. Выход 21.43 г (95.7%).

Бис-(4-фенилэтинил)(4-нитрофенил)амин (II6) синтезировали аналогично соединению IIа, начиная от *бис-*(4-бромфенил)(4'-нитрофенил)амина. Получили ярко-оранжевые кристаллы. Выход 11.67 г (71.3%).

Бис-(4-фенилглиоксалил)(4-нитрофенил)амин (III6) синтезировали аналогично соединению IIIа, начиная от *бис-*(4-фенилэтинил)(4-нитрофенил)амина II6. Выход 8.96 г (95.1%).

Синтез полифенилхиноксалина IVa. В трехгорлую колбу емкостью 25 мл, снабженную механической мешалкой, обратным холодильником и вводом для аргона, помещали 0.2143 г (1 ммоль) 3,3',4,4'-тетрааминодифенила, 0.5096 г (1 ммоль) бис-α-дикетона IIIа и 2.5 мл *м*-крезола. Реакционную массу перемешивали при комнатной температуре 2 ч, далее температуру поднимали до 170°С и нагревали в этих условиях 5 ч. Затем раствор полимера охлаждали и выливали в 10-кратный избыток ацетона. Осадок полимера отфильтровали, промывали спиртом, сушили в вакууме при 100°С. Приведенная вязкость ПФХ IVa составила 0.81 дл/г в *м*-крезоле при концентрации 0.5 г/дл и 25°С. Аналогично синтезировали ПФХ ІVб и ПФХ IVв, характеристики которых приведены в табл. 4.

СПИСОК ЛИТЕРАТУРЫ

- 1. Beaujuge P., Reynolds J. // Chem. Rev. 2010. V. 110. № 1. P. 268.
- Han-Yu Wu, Kun-Li Wang, Der-Jang Liaw, Kueir-Rarn Lee, Juin-Yin Lai // J. Polym. Sci., Polym. Chem. 2010. V. 48. № 7. P. 1469.

- 3. Yu W., Pei J., Huang W., Heeger A. // Chem. Commun. 2000. V. 8. P. 681.
- 4. Beaupre S., Dumas J., Leclerc M. // Chem. Mater. 2006. V. 18. № 17. P. 4011.
- 5. *Liou G., Lin H.* // Macromolecules. 2005. V. 42. № 1. P. 125.
- Liou G., Chang Ch. // Macromolecules. 2008. V. 41. № 5. P. 1667.
- Yen H., Liou G. // Organic Electronics. 2010. V. 11. № 2. P. 299.
- 8. *Cheng S., Hsiao S., Su T., Liou G.* // Macromolecules. 2005. V. 38. № 2. P. 307.
- Ogino K., Kanagae A., Yamagushi R., Sato H., Kurtaja J. // Macromol. Rapid. Commun. 1999. V. 20. № 2. P. 103.
- 10. Jung S.H., Suh D.H., Cho H.N. // Polym. Bull. 2003. V. 50. № 4. P. 251.
- 11. Zhan X., Liu Y., Wu X., Wang Sh., Zhu D. // Macromolecules. 2002. V. 35. № 7. P. 2529.
- 12. Gerson F., Scholz M., Hansen H., Uebelhart P. // J. Chem. Soc., Perkin Trans. 2. 1995. P. 215.